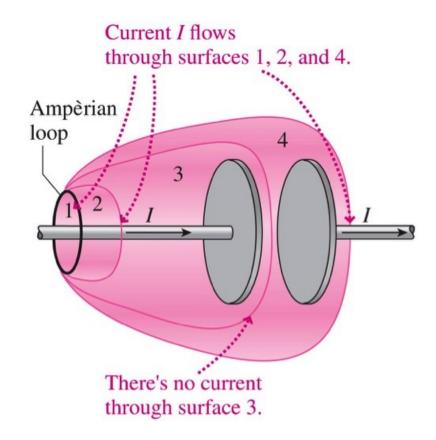

e.m. waves


Displacement current

Current resulting in change (displacement) of electric field

Total current in Ampere's loop law is sum of conduction current ($i_{\rm C}$) and displacement current ($i_{\rm D}$)

$$\oint B \bullet dl = \mu_{o} i_{c} + \mu_{o} \varepsilon_{o} \frac{d\phi_{E}}{dt}$$

Ampere-Maxwell law

With the introduction of displacement current the electromagnetic phenomena are more *symmetric* as changing magnetic field results in electric field and changing electric field results in magnetic field.

General observations of charges and fields	
	Stationary charges produce electric fields
	Charges in uniform motion produce magnetic field and electric field that is constant in time and space.
	Accelerated charges produce time varying electric and magnetic fields
	Oscillating electric field produces oscillating magnetic field and vice-versa.
	Frequency of generated e.m. wave is equal to frequency of the source.
	Energy associated with e.m. wave comes at the expense of energy of

oscillating charge.

General properties of *e.m.* waves

- em waves are non- mechanical waves
- lacktriangle em waves are transverse waves (as they exhibit polarization)
- em waves undergo superposition
- em waves exhibit reflection, refraction, transmission, absorption etc.
- e.m. waves carry energy and momentum
- e.m. waves exert radiation <u>pressure</u>

e.m. wave equation

Equation for E and B for an e.m. wave propagating along the z-axis

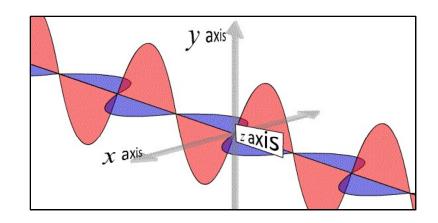
$$E_x = E_o \sin(kz - \omega t)$$

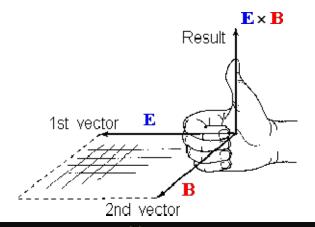
$$B_{y} = B_{o} \sin(kz - \omega t)$$

 $E_{\rm o}$ is amplitude of electric field intensity

 $B_{\rm o}$ is amplitude of magnetic field induction

k: propagation constant


z: position


 ω : angular frequency

t: instant of time

$$k = \frac{2\pi}{\lambda}$$

E, *B* and direction of propagation are mutually perpendicular to each other.

Important relations

 ω , speed and k relation

$$\omega = ck$$

Speed of propagation in vacuum

$$c = \frac{1}{\sqrt{\mu_{\rm o} \varepsilon_{\rm o}}}$$

Speed of propagation in a medium

$$v = \frac{1}{\sqrt{\mu \varepsilon}}$$

Refractive index of medium

$$\sqrt{\mu_{\rm r} \mathcal{E}_{\rm r}}$$

Amplitudes relation

$$B_{\rm o} = \frac{E_{\rm o}}{c}$$

 ω : angular frequency

k: wave vector

c: speed of light in vacuum

 $\mu_{\rm o}$: permeability of vacuum

 \mathcal{E}_{o} : permittivity of vacuum

v: speed of flight in a medium

 μ : permeability of medium

 ε : permittivity of medium

 $E_{\rm o}$: Electric field intensity amplitude

 $B_{\rm o}$: Magnetic field amplitude

Energy considerations in *e.m.* waves

- Energy density associated with electric field in *e.m.* wave is $\frac{\mathcal{E}_{\circ}E^{2}}{2}$
- Energy density associated with magnetic field in *e.m.* wave is $\frac{B^2}{2 \mu_o}$

Note : E and B in above relations are the instantaneous values and not the peak values

- Average Energy density due to E is equal to average energy density due to B
- Total energy density associated with electric & magnetic $\frac{\mathcal{E}_{o}E^{2}}{\mu_{o}}$ or field in e.m. wave is
- The maximum rate of energy flow is $\frac{1}{\mu_0} E \times B$

Momentum transfer in *e.m.* waves

If total energy transferred in time t is U then the total momentum delivered to the surface is

(a) assuming complete absorption

$$p = \frac{U}{c}$$

(b) assuming complete reflection

$$p = \frac{2U}{c}$$

Broad components of electromagnetic spectrum

Radio waves

- Produced by accelerated motion of charges in conducting wires
- Frequency range 500 kHz to 1000 MHz
- Used in communication (AM, FM cellular and TV)

Microwaves

- Short wavelength radio waves produced by special vacuum tubes
- Frequency range in GHz
- Used in radar systems and air navigation
- Microwave oven: Frequency of microwaves is adjusted to match the resonant frequency of water molecules to maximize transfer of energy (therefore efficient heating)

Broad components of electromagnetic spectrum

Infrared waves

- Produced by bodies at high temperature
- Also commonly called heat waves
- IR lamps are used for heat therapy, IR radiation keeps earth surface warm (green house effect)
- IR radiation emitting LEDs are used for remote

Visible rays

- $4 \times 10^{14} \text{Hz}$ to $7 \times 10^{14} \text{Hz}$
- Wavelength range 400 nm to 700 nm

Broad components of electromagnetic spectrum

UV rays

- Produced by special lamps and very hot bodies
- Wavelength range 400 nm to 0.6 nm
- Most of UV radiation is absorbed by ozone and ordinary glass
- UV rays cause tanning of skin.
- Used for eye surgery and killing germs in purification of water.

X rays

Obtained by bombarding heavy metal targets by high energy electrons

γ rays

Produced in nuclear reactions

sigmaprc@gmail.com
sigmaprc.in